Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.331
Filtrar
2.
Commun Biol ; 6(1): 1121, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925530

RESUMO

Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration.


Assuntos
Proteínas de Ciclo Celular , Cílios , Músculos , Células Satélites de Músculo Esquelético , Células-Tronco , Animais , Camundongos , Células Cultivadas , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Músculos/citologia , Células Satélites de Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/genética , Células-Tronco/citologia
3.
Nature ; 601(7893): 446-451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937935

RESUMO

Exosomes and other small extracellular vesicles (sEVs) provide a unique mode of cell-to-cell communication in which microRNAs (miRNAs) produced and released from one cell are taken up by cells at a distance where they can enact changes in gene expression1-3. However, the mechanism by which miRNAs are sorted into exosomes/sEVs or retained in cells remains largely unknown. Here we demonstrate that miRNAs possess sorting sequences that determine their secretion in sEVs (EXOmotifs) or cellular retention (CELLmotifs) and that different cell types, including white and brown adipocytes, endothelium, liver and muscle, make preferential use of specific sorting sequences, thus defining the sEV miRNA profile of that cell type. Insertion or deletion of these CELLmotifs or EXOmotifs in a miRNA increases or decreases retention in the cell of production or secretion into exosomes/sEVs. Two RNA-binding proteins, Alyref and Fus, are involved in the export of miRNAs carrying one of the strongest EXOmotifs, CGGGAG. Increased miRNA delivery mediated by EXOmotifs leads to enhanced inhibition of target genes in distant cells. Thus, this miRNA code not only provides important insights that link circulating exosomal miRNAs to tissues of origin, but also provides an approach for improved targeting in RNA-mediated therapies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Adipócitos/citologia , Comunicação Celular , Endotélio/citologia , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Fígado/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos/citologia
4.
Sci China Life Sci ; 64(12): 1998-2029, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865207

RESUMO

Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.


Assuntos
Células-Tronco , Animais , Encéfalo/citologia , Previsões , Humanos , Intestinos/citologia , Fígado/citologia , Fígado/fisiologia , Masculino , Músculos/citologia , Pâncreas/citologia , Próstata/citologia , Regeneração/fisiologia , Roedores , Pesquisa com Células-Tronco , Células-Tronco/fisiologia
5.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943996

RESUMO

Mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodelling and wound healing, reducing tissue damage. Upon neutrophil activation, there is a release of myeloperoxidase (MPO), an oxidant enzyme. But little is known about the direct role of MSCs on MPO activity. The aim of this study was to investigate the effect of equine mesenchymal stem cells derived from muscle microinvasive biopsy (mdMSC) on the oxidant response of neutrophils and particularly on the activity of the myeloperoxidase released by stimulated equine neutrophils. After specific treatment (trypsin and washings in phosphate buffer saline), the mdMSCs were exposed to isolated neutrophils. The effect of the suspended mdMSCs was studied on the ROS production and the release of total and active MPO by stimulated neutrophils and specifically on the activity of MPO in a neutrophil-free model. Additionally, we developed a model combining adherent mdMSCs with neutrophils to study total and active MPO from the neutrophil extracellular trap (NET). Our results show that mdMSCs inhibited the ROS production, the activity of MPO released by stimulated neutrophils and the activity of MPO bound to the NET. Moreover, the co-incubation of mdMSCs directly with MPO results in a strong inhibition of the peroxidase activity of MPO, probably by affecting the active site of the enzyme. We confirm the strong potential of mdMSCs to lower the oxidant response of neutrophils. The novelty of our study is an evident inhibition of the activity of MPO by MSCs. The results indicated a new potential therapeutic approach of mdMSCs in the inhibition of MPO, which is considered as a pro-oxidant actor in numerous chronic and acute inflammatory pathologies.


Assuntos
Armadilhas Extracelulares/enzimologia , Células-Tronco Mesenquimais/metabolismo , Músculos/citologia , Peroxidase/metabolismo , Animais , Degranulação Celular , Cavalos , Neutrófilos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
6.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585146

RESUMO

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Assuntos
Encéfalo/citologia , Corioide/citologia , Células Endoteliais/citologia , Pulmão/citologia , Músculos/citologia , Animais , Citometria de Fluxo/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 12(1): 5059, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429413

RESUMO

With the current interest in cultured meat, mammalian cell-based meat has mostly been unstructured. There is thus still a high demand for artificial steak-like meat. We demonstrate in vitro construction of engineered steak-like tissue assembled of three types of bovine cell fibers (muscle, fat, and vessel). Because actual meat is an aligned assembly of the fibers connected to the tendon for the actions of contraction and relaxation, tendon-gel integrated bioprinting was developed to construct tendon-like gels. In this study, a total of 72 fibers comprising 42 muscles, 28 adipose tissues, and 2 blood capillaries were constructed by tendon-gel integrated bioprinting and manually assembled to fabricate steak-like meat with a diameter of 5 mm and a length of 10 mm inspired by a meat cut. The developed tendon-gel integrated bioprinting here could be a promising technology for the fabrication of the desired types of steak-like cultured meats.


Assuntos
Bioimpressão/métodos , Géis , Carne , Tendões , Animais , Bovinos , Técnicas de Cultura de Células , Colágeno , Células Endoteliais , Músculos/citologia , Músculos/fisiologia , Impressão Tridimensional , Células-Tronco , Tendões/citologia , Engenharia Tecidual
8.
ACS Appl Mater Interfaces ; 13(33): 39135-39141, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374274

RESUMO

Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.


Assuntos
Materiais Biomiméticos/química , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Nanofios/química , Tecidos Suporte/química , Materiais Biomiméticos/metabolismo , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Iodo/química , Molibdênio/química , Músculos/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Enxofre/química , Propriedades de Superfície , Engenharia Tecidual , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Nat Commun ; 12(1): 5043, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413292

RESUMO

Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5'-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5' UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5' UTR of target mRNAs.


Assuntos
Regiões 5' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Quadruplex G , Músculos/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Modelos Animais de Doenças , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Músculos/metabolismo , Mioblastos/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Células-Tronco/metabolismo
10.
J Exp Zool B Mol Dev Evol ; 336(6): 496-510, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254444

RESUMO

Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.


Assuntos
Ploidias , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Tamanho Celular , Tamanho do Genoma , Microscopia Confocal , Músculos/citologia
11.
J Biosci Bioeng ; 132(1): 64-70, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33840593

RESUMO

At high altitudes, the hypoxic atmosphere decreases the oxygen partial pressure in the body, inducing several metabolic changes in tissues and cells. Furthermore, it exerts potent anorectic effects, thus causing an energy deficit. Two decades ago, a marked increase in the resting level of plasma cholecystokinin (CCK) was observed in humans at the Mt. Kanchenjunga basecamp, located at 5100 m above the sea level, compared to sea-level control values. Interestingly, acute exercise also raises plasma CCK and exerts potent anorectic effects under normoxic conditions. However, the transcriptional regulations of Cck gene underlying these effects have not yet been established. Here, we employed acute electrical pulse stimulation (EPS) followed by microarray analysis to discover novel myokines in 3D-engineered muscle. Acute EPS affects the contractile function, inducing a decline in the contractile force. Surprisingly, microarray analysis revealed an EPS-induced activation of cholecystokinin receptor (CCKR)-mediated signaling. Furthermore, Cck was constitutively upregulated in 3D-engineered muscle, and its expression increased under hypoxic conditions. Notably, a hypoxia-responsive element was detected in the Cck promoters of mice and humans. Our results suggested that hypoxia transactivated Cck expression in 3D-engineered muscle. Furthermore, the elevation in plasma CCK levels following acute exercise or at high altitude might be partly attributed to myogenic cells.


Assuntos
Colecistocinina/genética , Regulação da Expressão Gênica , Hipóxia/genética , Músculos/metabolismo , Engenharia Tecidual , Animais , Colecistocinina/sangue , Estimulação Elétrica , Humanos , Hipóxia/fisiopatologia , Masculino , Camundongos , Contração Muscular , Músculos/citologia , Músculos/fisiologia
12.
Cell Mol Life Sci ; 78(12): 5043-5049, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33861361

RESUMO

Neuromuscular system is constituted of multi-fibrillar muscles, tendons, motor neurons and associated muscle stem cells. Stereotyped pattern of muscle innervation and muscle-specific interactions with tendon cells suggest that neuromuscular system develops in a coordinated way. Remarkably, upon regeneration, coordinated assembly of all neuromuscular components is also critical to rebuild functional muscle. Thus, to ensure muscle function, the neuromuscular system components need to interact both during development and regeneration. Over the last decades, interactions between muscles and tendons, muscles and motor neurons and between muscles and muscle stem cells have been extensively analysed and documented. However, only recent evidence indicates that muscle stem cells interact with motor neurons and that these interactions contribute to building functional muscle both during development and regeneration. From this perspective, we discuss here the relationship between muscle stem cells and motor neurons during Drosophila neuromuscular system development and adverse impact of affected muscle stem cell-motor neuron interactions in regenerating vertebrate muscle.


Assuntos
Neurônios Motores/fisiologia , Músculos/fisiologia , Junção Neuromuscular/fisiologia , Regeneração , Células-Tronco/fisiologia , Animais , Humanos , Músculos/citologia , Células-Tronco/citologia
13.
Biomolecules ; 11(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919651

RESUMO

Luminescent derivatives of benzanthrone are becoming more useful based on their light-absorbing and fluorescent-emitting properties. Our previous studies showed that luminescent staining properties of the same benzanthrone dye differ for variable parasite samples. Therefore, two types of benzanthrone dyes were prepared. One has a strongly basic amidine group and a halogen atom, and the other has an amide moiety and a tertiary amine group. Trematoda Parafasciolopsis fasciolaemorpha is a liver fluke of a moose (Alces alces) and has a significant influence on the health and abundance of the moose population. Staining protocols for parasite P. fasciolaemorpha specific organ or organ systems imaging are mostly time-consuming and labor-intensive. The study aimed to compare the fixation technique and the staining protocol by synthesized benzanthrone luminescent dyes to determine detailed morphology, anatomical arrangement of the organ systems and gross organization of the muscle layers of P. fasciolaemorpha using confocal laser scanning microscopy. Luminophores were tested for samples fixed in different fixatives. Developed dyes and staining protocol resulting in imaging of all parts of trematode without additional sample preparation procedures, which usually are required for parasite examination. Obtained results confirmed that the most qualitative results could be reached using 3-N-(2-piperidinylacetamido)benzanthrone dye which has amide moiety and a tertiary amine group. Based on obtained results, 3-N-(2-piperidinylacetamido)benzanthrone gave more qualitative parasite visualization than 2-bromo-3-N-(N',N'-dimethylformamidino)benzanthrone.


Assuntos
Benzo(a)Antracenos/química , Corantes Fluorescentes/síntese química , Coloração e Rotulagem/métodos , Trematódeos/citologia , Animais , Corantes Fluorescentes/normas , Microscopia Confocal/métodos , Músculos/citologia , Músculos/metabolismo , Sensibilidade e Especificidade , Fixação de Tecidos/métodos
14.
J Anat ; 239(2): 336-350, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33641201

RESUMO

Muscle stem cells (MSCs) are a promising tool for cell-based therapy and tissue regeneration in veterinary medicine. Evaluation of MSCs from muscles of different origins improves our understanding of their regenerative potential. The present study compared the stemness, cell proliferation, migration potential, myogenic differentiation (MD), and multipotency of MSCs for four developmentally different muscles of ovine origin. MSCs were isolated from the hind limb (HL), diaphragm (DI), extraocular (EO), and masseter (MS) muscles. Cell proliferation, migration, and stemness were examined using sulforhodamine B, and colony formation assays. Evaluation of multipotency was examined using histological and morphometric analyses, alkaline phosphatase (ALP) activity, and the expression of myogenic, adipogenic, and osteogenic markers using RT-qPCR. Data were statistically analysed using analysis of variance. The results revealed that all experimental groups expressed stem cell markers paired box transcription factor Pax7, α7-integrin, CD90, and platelet-derived growth factor receptor alpha. DI and HL muscle cells displayed higher proliferation, migration, and colony formation capacities compared to the EO and MS muscle cells. HL and DI muscle cells showed increased MD, as indicated by myotube formation and relative expression of MyoD at day 7 and Myogenin at day 14. Although MS and EO muscle cells displayed impaired MD, these cells were more prone to adipogenic differentiation, as indicated by Oil Red O staining and upregulated fatty acid-binding protein 4 and peroxisome proliferator-activated receptor gamma expression. DI muscle cells demonstrated a higher osteogenic differentiation capability, as shown by the upregulation of osteopontin expression and an elevated ALP activity. Our data indicate that ovine HL and DI MSCs have a higher regenerative and multipotent potential than the EO and MS muscle cells. These results could be valuable for regional muscle biopsies and cell-based therapies.


Assuntos
Células-Tronco Multipotentes/fisiologia , Músculos/citologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Masculino , Ovinos
15.
Development ; 148(5)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547134

RESUMO

The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Músculos/metabolismo , Oogênese/genética , Ovário/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proliferação de Células , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Músculos/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovário/citologia , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética
16.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525417

RESUMO

Evidence is reviewed for the role of glutathione in providing a ligand for the cytosolic iron pool. The possibility of histidine and carnosine forming ternary complexes with iron(II)glutathione is discussed and the physiological significance of these interactions considered. The role of carnosine in muscle, brain, and kidney physiology is far from established and evidence is presented that the iron(II)-binding capability of carnosine relates to this role.


Assuntos
Carnosina/metabolismo , Glutationa/metabolismo , Histidina/metabolismo , Quelantes de Ferro/metabolismo , Ferro/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Rim/citologia , Rim/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/citologia , Músculos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
J Fish Biol ; 98(5): 1349-1362, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33410520

RESUMO

We report the effects of food deprivation on the early development of Pacific red snapper Lutjanus peru during the first days of development. The point of no return (PNR) was determined using the feeding incidence after a delay in first feeding. The gradual deterioration of the larvae during food deprivation was recorded using morphometric, histological, enzymatic and biochemical analysis. The time to reach the PNR was 120 h after hatching. Morphologically, the total length, muscle height, head length, tail length and pectoral angle showed the biggest reductions and their growth coefficients changed significantly during food deprivation. Histologically, enterocyte height also was reduced significantly. The protein concentration and activities of the digestive enzymes trypsin, cathepsin-like and lipase showed a significant decrease; meanwhile, amylase activity remained constant during food deprivation. The concentration of total essential free amino acids (EFAAs) decreased significantly while that of the nonessential free amino acids (NEFAAs) remain stable during food deprivation. The most abundant EFAAs were lysine, leucine, isoleucine and valine; the most abundant NEFAAs were alanine, glycine and glutamate, suggesting a more prominent role as energy substrates. At the time of the PNR the concentration of almost all the free amino acids showed a significant decrease. Early food deprivation has a significant impact on the morphology and biochemical characteristics of L. peru. These results suggest that initial feeding of L. peru should begin within 3 days of yolk sac depletion to avoid the PNR. Further studies are necessary to confirm and validate the characters identified in this study as biomarkers of starvation under culture conditions and evaluate their possible utility in ichthyoplankton surveys.


Assuntos
Enterócitos/citologia , Privação de Alimentos , Músculos/citologia , Perciformes/anatomia & histologia , Perciformes/crescimento & desenvolvimento , Aminoácidos/sangue , Animais , Enterócitos/patologia , Músculos/química , Músculos/patologia , Perciformes/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-33186699

RESUMO

MicroRNAs (miRNAs) play an important role in regulating gene expression, and myostatin (MSTN) has been widely recognized as a key gene for muscle growth and development. Through high-throughput sequencing to study the effects of starvation on miRNA transcriptomes in Larimichthys crocea muscle tissue, we found that the expression of miR-2014, miR-1231 and miR-1470 were significantly different between fasting and normal feeding Larimichthys crocea. Bioinformatics analysis predicted that miR-2014, miR-1231 and miR-1470 target MSTN mRNA 3'UTR. To verify the accuracy of predictions, we constructed double luciferase plasmids containing MSTN 3'UTR and confirmed that miR-2014-5p and miR-1231-5p can inhibit MSTN expression by targeting MSTN 3'UTR using double luciferase experiments, while miR-1470 is not involved in regulation. Subsequent site-directed mutation experiments reflected the specificity of the target sequence. In addition, quantitative PCR experiments revealed that miR-2014-5p and miR-1231-5p may participate in the regulation of MSTN expression in fasting and refeeding period, respectively. These results implied that miRNA may take part in muscle growth regulation during starvation. It provides some insights into the molecular regulation mechanism of MSTN in response to starvation stress in fish.


Assuntos
Proteínas de Peixes/genética , MicroRNAs/genética , Músculos/citologia , Miostatina/metabolismo , Perciformes/crescimento & desenvolvimento , Perciformes/genética , Animais , Biologia Computacional/métodos , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo , Miostatina/genética , Perciformes/metabolismo , Análise de Sequência de RNA/métodos , Inanição
19.
PLoS One ; 15(12): e0242939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306687

RESUMO

Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Metilases de Modificação do DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculos/citologia , Neurônios/citologia , Fatores Genéricos de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica
20.
Sci Rep ; 10(1): 21225, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277587

RESUMO

Each year from April to May, high mortality rates are reported in red swamp crayfish (Procambarus clarkii) cultured in Jiangsu and other regions, in China, and this phenomenon has come to be known as "Black May" disease (BMD). Therefore, in order to investigate the possible causes of this disease, this study gathered BMD-affected P. clarkii samples and performed transcriptome analysis on hepatopancreas, gill, and muscle tissues. A total of 19,995,164, 149,212,804, and 222,053,848 clean reads were respectively obtained from the gills, muscle, and hepatopancreas of BMD-affected P. clarkii, and 114,024 unigenes were identified. The number of differentially expressed genes (DEGs) in gill, muscle, and hepatopancreas was 1703, 964, and 476, respectively. GO and KEGG enrichment analyses of the DEGs were then conducted. Based on KEGG pathway enrichment analysis, the most significantly differentially expressed pathways were mainly those involved with metabolism, human disease, and cellular processes. Further analysis of the significantly DEGs revealed that they were mainly related to the mitochondrial-mediated apoptosis pathway and that the expression of these DEGs was mostly down-regulated. Moreover, the expression of genes related to immune and metabolism-related pathways was also significantly down-regulated, and these significantly-inhibited pathways were the likely causes of P. clarkii death. Therefore, our results provide a basis for the identification of BMD causes.


Assuntos
Doenças dos Animais/metabolismo , Apoptose/genética , Astacoidea/metabolismo , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo , Transcriptoma/genética , Doenças dos Animais/genética , Animais , Astacoidea/citologia , Astacoidea/genética , Astacoidea/imunologia , China , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Brânquias/citologia , Brânquias/imunologia , Brânquias/patologia , Hepatopâncreas/citologia , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/citologia , Músculos/imunologia , Músculos/patologia , RNA-Seq , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...